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It has been known for many years that any solenoidal field - for
instance, a magnetic field B - can be represented as the cross product

of the gradients of twé scalars, usually denoted by o and B8

B= Vax VB (1)

In fact it was Buler (1769), who first used this representation; figure 1
is taken from one of his works. In this figure, u, v and w are the cartesian
components of the field vector, and one sees - apart from the irrelevant
functions TI' , A and &, and from the fact that Euler used no special
notation for partial derivatives - that they are given by the cross product
of the gradients of the scalars F and G. It therefore appears appropriate

to refer to such scalars as Euler potentials.

The advantage of Euler potentials is that, by definition, Va and VB
are both perpendicular to the field vector B. Because of this property,
B is tangential to surfaces of constant o and of constant B, and the
‘ intersections of pairs of such surfaces yield field lines. In other words,

each field line is labeled by a pair of constant values, assumed by the

¥Presented 16 June, 1967 at the Conjugate Point Symposium, Boulder, Colorado.




functions & and B which are conserved on it.

In classical electrodynamics, field lines play a relatively minor role,
and for this reason the study of Buler potentials has been neglected for a
long time. On the other hand, field lines are important in plasma physics
and in the motion of charged particles, and indeed, it was in this connection
that Euler potentials were reintroduced during the last decade, in theore-
tical work by Northrop and others.

The purpose of this work is to review some recent results on geomagne-
tic Euler potentials. It will be shown that they can serve not only as a
purely theoreticadl tool but as a practical one, as something that can be
expressed and used in a similar mammer as can, for instance, the geomagne-
tic scalar potential

The difficulty in trying to do so arises from the fact that the
representation is nonlinear, since it contains products of derivatives
of o and B. Because of this nonlinearity, Euler potentials are in
general hard to obtain explicitely, except for certain fields with a high
degree of symmetry. One may not, in such a derivation, resolve the field
into simple components and then add up their Euler potentials, because
superposition does not exist in this case.
One may, however, make use of the fact that the geomagnetic field - to
which we now restrict the discussion - is not too different from a dipole
field, for which Euler potentials are readily found. Denoting by a the
earth's radius, by gf the dipole coefficient in the spherical harmonic
expansion of the scalar potential ' and by subscript zero any quantity
associated with the dipole field, these are (one choice out of many

possible)



Q
1l

a gf (a/r) sin~ 9
(2)
Bo = 2 ¢

One notes that Bo is proportional to the azimuth angle ¢ ,
signifying that dipole field lines lie in meridional planes, whereas a,
is proportional to sinze/r , & quantity which is known to be conserved
along dipole field lines. Using the complete spherical harmonic expansion
of ¥ , one can now obtain a first-order correction which, when added to
the dipole Euler potentials of egquation (2), yields a betfer approximation
to o and B of the geomagnetic field. The correction turns out to have
an analytical form and to be fairly simple, but its derivation is too
lengthy to be included here. Details may be found in the work of Stern
(1967), and the method is also related to that of Pennington (1967).

One possible application of the results is the labeling of conjugate
points, as given in Figure 2, which shows a map of o and 8 on the
earth's surface. As has been noted, each field line is characterized by
a pair of constants, which are the values of & and B on it. A pair of
conjugate points, threaded by the same field line, is therefore identitied
on this map as a pair of points having the same values of o and B .

The map shown here is based on first-order potentials, and is accurate
within about 2 degrees. The next sitep would be the derivation of more
accurate values, not only on the earth’'s surface but in the entire
surrounding space. In principle, this could have been accomplished by
carrying the approximation to its second order, which also has analytical

form. 1In fact, such a derivation and the results it gives are lengthy and
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inconvenient, so that it appears to be better to evaluate the higher correc-
tion numerically. This approach also appears to be useful for including

in the model the effects of a ring current, but the details are beyond the
scope of this brief review.

Another application concerns the external magnetosphere. For this

region, models have been developed (Mead, 1964) in which the expansion of
the scalar potential ¥ includes terms increasing with distance, and in
general, among these terms, two - involving the coefficients é? and
ég' - are by far the most important.

Starting from a model including only the dipole part and the above two

terms, on can derive first-order Euler potentials

- 2
as = lg (a/r) - #&) (v/2)7) sin®e +
(3)
+ a3 é; (r/a)3 [ (sine/7) - (sin®6/3) 1 cos @
Ba = ¢ - W1 (/) (x/a)® sino sing (1)
The features of this model are shown in figure 3, giving its lines of

constant o (which in this case are also field lines) in the noon-midnight
meridian. As can be seen, the model fits surprisingly well our concepts of
the magnetosphere - probably better so than the current-free model from
which it was derived. Because an approximation was used in its derivation,
it is not current free, and it is interesting to note that it has 3 neutral
points - two in front and one in the rear, where one may perhaps splice

onto it a neutral sheet.



Figure 4 gives the equatorial cross section of the model, with solid
lines giving lines of constant B and broken ones those of constant o .
One can observe here how field lines are swept backwards, a result also
obtained from other models.

The remainder of this work will discuss the equations of drift shells,
that is, of surfaces traced by trapped particles in their adiabatic motion.
As will be seen, such equations are most naturally expressed by means of
Euler potentials.

Because drift shells are tangential to field lines, their equations

have the form

f(a,B) = 0 (5)
or

g(B) (6)

Q
i

The entire collection of drift shells in the geomagnetic field can be
characterized by two parameters, depending on the associated adiabatic
invariants of each shell. In particular, one may choose for such para-
meters the field intensity Bm at i mirror nnint and the integral along

a field line

I= [ J‘]_-—137-]3_r; at (7
BLB,

The entire family may thus be described by an equation of the form

Q= G(B,I,Bm) (8)
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In a dipole field, as was seen in equation (2), Bo 1s proportional to
the azimuth angle ¢ and, due to axial symmetry, does not appear in the

preceding equation. Equation (8) may therefore be rewritten in the form

constant

% = L(LE,) (9)

where L(I,Bm) is some function of the parameters I and By and is in
fact the same as the function L introduced by McIlwain (1961) and

widely used. In a perturbed dipole field, there will be an additional ''shell
splitting” correction term, which brings the equation to the form

constant
o = —L—(I,—BI;)- + Gl(r,e,¢,Bm) (10)

This term gives the next step beyond using L alone to label drift
shells (as experimenters nowadays do), since it describes the variation
between shells having the same value of L . An approximation to G1 may
be obtained by using first-order Euler potentials (Stern, to be published);
the results are equivalent to those obtained by FPenningion {(1061), who
used a perturbation technique to obtain approximate magnetic shells for the
geomagnetic field.

Shell splitting increases with departure from axial symmetry and is
thus most pronounced in the external magnetosphere. It is, therefore, most
instructive to examine some results on the deformation and splitting of
drift shells obtained with the previously described magnetospheric model,
for which the first-order shell splitting function is readily found.
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In this model, we launched particles with various pitch angles from
given points in the equatorial plane, and asked where they would pass this

plane on the opposite side of the earth. Figure 5 shows the nightside

intersections of particles starting from 7 earth radii on the noon side.
Two methods were used - a perturbation method using a first-order approxi-
mation to G1 > and an exact method using adiabatic invariants. It is
evident that the two methods agree quite well, and also that the drift
shells depart considerably from axial symmetry.

Next we did something requiring more accuracy but also more interesting
- we let the initial pitch angle of each particle be scattered downwards by
one degree, and examined, by how much did such scattering cause the midnight
intersection to move radially. The results are given in Figure 6, and one
notes that the agreement between the two methods is only qualitative, this
being a more sensitive test. With either method, however, the interesting
Tact emerges that such scattering causes particles with pitch angles
around TOO to move further radially than those with either larger or smaller
pitch angles. If, as has been suggested, the combination of asymmetry and
small angle scattering is an important mechanism in transporting radiation-
belt particles across field lines, then the preceding would imply that such
transport is strongly pitch-angle dependent, being most efficient for pitch
angles around 700.

In conclusion, it appears that Euler potentials have considerable
practical use, for investigation of conjugacy and for broader purposes. In
the future, it is hoped +the avenues sketched out here will all be fully
explored, and Euler potentials will become cne of the standard tools of

the trade.
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Captions to Figures

Figure 1 -

Figure 2 -

Figure 3 -

Figure 4 -

Figure 5 -

Figure 6 -

No caption

Lines of constant first-order Euler potentials on the
earth's surface. Plotted are B/a in 10-degree intervals,
as well as (ag?hﬁ - the quantity which in a dipole field
equals the equatorial crossing distance in earth radii -
for the values (increasing with distance from the
geomagnetic equator, which is also shown) 1, 1.05,

1.1, 1.25, 1.5, 1.75, 2, 2.5, 3, 4, 5 and 10 earth radii.
Lines of constant « in the noon-midnight meridian of the
first-order magnetospheric model. Values given are those
of (agf/a).

Lines of constant g (solid) and of constant g (broken)

in the equatorial plane of the first-order model
magnetosphere. Values given are those of (agi/a).

The equatorial crossing distance in earth radii on the
midnight meridian, for particles starting with various
pitch angles on the equator at 7 Re, v the cunward aqide.
The night-time radial displacement in earth radii resulting
from a one-degree pitch angle scattering, for particles
starting with various pitch angles on the equator at 7 Re’

on the sunward side.



104 SECTIO S8ECUNDA DE PRINCIPIIS MOTUS FLUIDORUM (314215

SCHOLION 2

49. Ex solutione problematis, dum per gradus ad aequationem pro.
positam sumus progressi, casum, quo fluidi densitas ¢ est constans et prima

anquatio ita se habet (du) (%) + (fﬂ) =0,

dz
resolvere poterimus, quod eo magis st notandum, quotl huius solutionem ex
generali, quam dedimus, derivare non Jicct. Quamquam autem hic tres tantum
variabiles z, y ot z considerantur, taruen nihil impedit, qucininus in solutione
ibi data etiam quartum ¢ introducamus, cam quasi constuntem spectando.
Sumtis ergo pro lubitu duabus functionibus ¥, @ quatuor varinbilium z, y, 2
ct ¢, ex lis ternae celeritates u, v et w ita determinabuntur, ut sit

= ) () + o

dr

= ()2 s
St P N

udi totum momentum iterum in eo est situm, quod cuivie membro cuiusque
formae in reliquis respondest aliquod, quod cum eo datum factorem habeat

et signo io sit aff Totus sutem hic casus, quo den.
sitas fluidi est g i ADS, tur, ut im diligenti 1 .,

Figure 1
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